Определение скорости кровотока

Определение скорости кровотока. Оценка скорости кровотока

Определение скорости кровотока

В некоторых случаях для дифференциации форм одышки полезно определение скорости кровотока. При сердечной недостаточности скорость понижена, при других формах одышки — в норме.

Как правило, определяются два времени:
1) время «рука — легкие» (эфирное время — показатель деятельности преимущественно правого желудка).

После быстрого введения в вену 0,3 мл эфира для наркоза и 0,3 мл физиологического раствора хлористого натрия появление эфира в легких ясно ощущается по запаху эфира; в норме через 4— 8 секунд;
2) время «рука — язык» (дехолиновое время) определяется, обычно с помощью внутривенной инъекции дехолина (3 мл 20% раствора дехолина), который, пройдя в норме за 9—15 секунд большой круг кровообращения, дает ощущение горького вкуса на языке.

При наличии оксиметра время кровотока можно измерить очень точно и, главное, без субъективных показаний больного.

Время «рука — ухо» (соответствующее времени «рука — язык») определяется введением в вену руки methylenblau (0,3 мл 2% раствора на 10 кг веса тела) и измерением времени от момента введения в вену до появления красящего вещества в ухе [распознается по отклонению оксиметрической кривой (в норме 7 — 12 секунд)].

Время «легкие — ухо» определяется временем от арпое или вдыхания азота до начала появления насыщенной окраски уха (в норме 3—5 секунд). Вычитая из времени «рука — ухо» время «легкие — ухо», можно легко рассчитать время «рука — легкие».

С помощью такого метода удается дифференцировать недостаточность левого желудочка, при которой удлиняется время «легкие — ухо», от недостаточности правого желудочка, при которой удлиняется время «рука — легкие». Выражая общую недостаточность, оба времени, как правило, удлинены.

Теперь, когда стало возможным объективно измерять время кровотока, оно стало приобретать все большее и большее значение для оценки сердечной недостаточности.

Удлинение времени напряжения сердца при сердечной недостаточности — явление частое, но определение его требует одновременного снятия ЭКГ и двух пульсовых кривых и поэтому практического значения до сих пор не приобрело.

Нормальное время напряжения равно 0,07—0,09 секунды, но может достигать и 0,20 секунды (Blumberger).

Определение времени кровотока и напряжения сердца позволяет ставить диагноз сердечной недостаточности только в далеко зашедших случаях, в начальных же стадиях, когда с помощью компенсаторных механизмов (повышение венозного, resp.

желудочкового, давления) можно еще побудить недостаточно работающую сердечную мышцу к повышенной деятельности, эти методы в качестве диагностических критериев непригодны.

Часто приходится удивляться, как больные при значительном удлинении (около 1/3 нормы) времени кровотока имеют очень незначительные субъективные ощущения.

Попытки патогенетического объяснения симптомов декомпенсации имеют для диагностики гемодинамической сердечной недостаточности ограниченное значение.

Старая классическая теория о «backward failure», которая, следовательно, рассматривает застойные симптомы только как застой позади теперь не работоспособного сердца, не в состоянии объяснить всех клинических форм декомпенсации.

Поэтому для объяснения повышенного венозного давления особенно подчеркивают значение рефлекторного механизма, вызывающего сужение вен, и общего увеличения количества плазмы крови (Wollheim). Этот последний фактор можно считать результатом «forward failure», т. е.

недостаточности впереди сердца (по току крови) в смысле снижения минутного выброса крови. При «forward failure» кровенаполнение почек, а следовательно, и выделение соли понижено, что ведет к общей задержке в организме жидкости.

Самое определение минутного объема сердца — дело клиники.

За исключением приведенной в нашей статье группы заболеваний с большим минутным объемом сердца (с первичным нарушением на периферии), минутный объем сердца при первичном нарушении в самом сердце снижен (low output failure-недостаточность со сниженным количеством выбрасываемой крови). Возможно, что этого снижения в легких случаях и в покое не удается выявить и заметным оно становится только во время нагрузки в случае недостаточной способности сердца повысить минутный объем.

Играет роль также продукция альдостерона, механизм регулирующего влияния которого еще недостаточно выяснен, так как альдостерон (фактор, задерживающий натрий) препятствует выделению натрия почками и тем самым способствует задержке жидкости.

Проба с инъекцией строфантина во многих случаях позволяет «демаскировать» начинающуюся сердечную недостаточность. Если спустя несколько часов после введения 0,25 мг строфантина субъективные симптомы исчезают или объективно наблюдается уменьшение всех симптомов застоя в легких, resp. избыточное выделение мочи, то сердечная недостаточность становится очень вероятной.

– Вернуться в оглавление раздела “Профилактика заболеваний”

Оглавление темы “Причины одышки. Сердечная недостаточность.”:
1. Одышка. Причины одышки.
2. Одышка при заболеваниях легких. Одышка при поражении легких.
3. Предел дыхания. Проба Тиффно. Виды легочной недостаточности.
4. Дыхательная недостаточность при бронхиальной астме. Одышка при эмфиземе.
5. Одышка при бронхите. Диагностика бронхита.
6. Бронхит от раздражения. Бактериальный бронхит. Бронхит при эмфиземе легких.
7. Одышка при заболеваниях сердца. Болезни сердца и одышка при них.
8. Симптомы заболевания сердца. Ритм галопа. Диагностика ритма галопа.
9. Симптомы сердечной недостаточности. Гемодинамическая сердечная недостаточность.
10. Определение скорости кровотока. Оценка скорости кровотока.

Источник: //meduniver.com/Medical/profilaktika/270.html

Определение скорости кровотока

Определение скорости кровотока

Существует несколько методов определения скорости кровото­ка. Рассмотрим физические основы двух из них.

Ультразвуковой метод (ультразвуковая расходеметрия) основан на эффекте Доплера (см. § 5.10). От генератора I электри­ческих колебаний УЗ-частоты (рис. 9.15) сигнал поступает на из­лучатель 2 и на устройство сравнения частот 3. УЗ-волна 4 прони­кает в кровеносный сосуд 5 и отражается от движущихся эритро­цитов 6.

Отраженная УЗ-волна 7 попадает в приемник 8, где преобразуется в электрическое колебание и усиливается. Усилен­ное электрическое колебание попадает в устройство 3.

Здесь срав­ниваются колебания, соответствующие падающей и отраженной волнам, и выделяется доплеровский сдвиг частоты в виде электрического колебания:

Из формулы (5.65) можно определить скорость эритроцитов:

В крупных сосудах скорость эритроцитов различна в зависи­мости от их расположения относительно оси: «приосевые» эрит­роциты движутся с большей скоростью, а «пристеночные» — с меньшей.

УЗ-волна может отражаться от разных эритроцитов, поэтому доплеровский сдвиг получается не в виде одной частоты, а как интервал частот.

Таким образом, эффект Доплера позволяет определять не только среднюю скорость кровотока, но и скорость движения различных слоев крови.

Электромагнитный метод (электромагнитная расходометрия) измерения скорости кровотока основан на отклонении движущихся зарядов в магнитном поле.

Дело в том, что кровь, бу­дучи электрически нейтральной системой, состоит из положи­тельных и отрицательных ионов. Следовательно, движущаяся кровь является потоком заряженных частиц, которые перемещаются со скоростью Укр.

На движущийся электрический заряд q в магнитном поле с индукцией В действует сила (см. § 13.3)

Если заряд отрицательный, то сила направлена противоположно векторному произведению vкрх В.

Как показано на рис. 9.16, силы, действующие со стороны маг­нитного поля на разноименные заряды, направлены в противоположные стороны. Около одной стенки кровеносного сосуда преоб­ладает положительный заряд, около другой — отрицательный.
Перераспределение зарядов по сечению сосуда вызовет появление электрического поля.

Возникающее электрическое напряжение U (см. рис. 9.16) зависит от ско­рости движения ионов, т. е. от скорости крови [см. (9.19)]. Таким образом, из­меряя это напряжение, можно опреде­лить и скорость кровотока. Зная сече­ние S сосуда, нетрудно вычислить объ­емную скорость кровотока (м3/с):

Практически удобнее в этом методе использовать переменное магнитное поле (рис. 9.17). Это приводит к возникновению переменного напряжения U, котopoe затем усиливается и измеряется.

Р А З Д Е Л 3

Термодинамика. Физические процессы в биологических мембранах

разделе рассматриваются явления, сущность которых определяется хаотическим движени­ем огромного числа молекул, из которых состоят тела разной при­роды. Изучая эти явления, применяют два основных метода.

Один из них — термодинамический, он исходит из основных опытных законов, получивших название начал (законов, принци­пов) термодинамики. При таком подходе не учитывается внутрен­нее строение вещества.

Другой метод — молекулярно-кинетический (статистиче­ский) — основан на представлении о молекулярном строении ве­щества. Учитывая, что число молекул в любом теле очень велико, можно, используя теорию вероятностей, установить определен­ные закономерности.

В разделе в разной степени используются оба подхода.

Медикам данные вопросы важны для понимания энергетики организма, теплообмена биологических систем с окружающей средой, выяснения физических процессов, происходящих в био­логических мембранах, и др.

Г Л А В А 10 Термодинамика

Под термодинамикой понимают раздел физики, рассматри­вающий тела, между которыми возможен обмен энергией (термодинамические системы), без учета микроскопическо­го строения тел, составляющих систему.

Различают термоди­намику равновесных систем или систем, переходящих к рав­новесию (классическая, или равновесная, термодинамика, часто называемая просто термодинамикой), и термодинами­ку неравновесных систем (неравновесная термодинамика).

Неравновесная термодинамика играет особую роль для рас­смотрения биологических систем.

В главе наряду с термодинамикой изложены также вопросы, связанные с использованием низких температур и нагретых сред для лечения, а также элементы термометрии и калори­метрии.

Основные понятия термодинамики. Первое начало термодинамики

Состояние термодинамической системы характеризуется фи­зическими величинами, называемыми параметрами системы (объем, давление, температура, плотность и т. д.).

Если параметры системы при взаимодействии ее с окружающи­ми телами не изменяются с течением времени, то состояние систе­мы называют стационарным. Примерами таких состояний в те­чение небольшого отрезка времени являются состояние внутрен­ней части работающего домашнего холодильника, состояние тела Человека, состояние воздуха в отапливаемом помещении и т. д.

В разных частях системы, находящейся в стационарном со­стоянии, значения параметров обычно различаются: температура в разных участках тела человека, концентрация диффундирую­щих молекул в разных частях биологической мембраны и т. п. В системе, таким образом, поддерживаются постоянные градиен­ты некоторых параметров, с постоянной скоростью могут проте­кать химические реакции.

Стационарное состояние поддерживается за счет потоков энер­гии и вещества, проходящих через систему. Схематически на рис. 10.1, а показано стационарное состояние, температура неодина­кова в разных точках системы.

Ясно, что в стационарном состоя­нии могут находиться такие системы, которые либо обменивают­ся и энергией, и веществом с окружающими системами (откры­тые системы), либо обмениваются только энергией (закрытые системы).

Термодинамическая система, которая не обменивается с окружающими телами ни энергией, ни веществом, называет­ся изолированной. Изолированная система со временем прихо­дит в состояние термодинамического равновесия.

В этом состоя­нии, как и в стационарном, параметры системы сохраняются не­изменными во времени. Существенно, что в равновесном состоянии параметры, не зависящие от массы или числа частиц (давление, температура и др.

), одинаковы в разных частях этой системы.

Естественно, что любая реальная термодинамическая система не будет изолированной хотя бы потому, что ее невозможно окру­жить оболочкой, не проводящей теплоту. Изолированную систе­му можно рассматривать как удобную термодинамическую мо­дель. Схематически равновесное состояние изолированной систе­мы показано на рис. 10.1, б.

Рассмотрим подробнее взаимодействие закрытой системы с ок­ружающими телами. Обмен энергией между ними может осу­ществляться в двух различных процессах при совершении работы и при теплообмене.

Мерой передачи энергии в процессе теплообмена является количество теплоты, а мерой передачи энергии в процессе соверше­ния работы является работа[1][1][1].

Найдем выражение для вычисле­ния работы, совершаемой газом при изменении его объема. Предположим, что газ, находящийся в цилиндриче­ском сосуде под поршнем, изобарно расширяется от V1 до V2 (рис. 10.2), при этом поршень перемещается на расстояние ∆l = l2 – l1, а объем изменя­ется на AV = V2-V1

На поршень, площадь поперечногосечения которого S, со стороны газа вследствие давления р действует сила F = pS. Так как направле­ние этой силы совпадает с направлением перемещения поршня, то работа, совершаемая газом,

При расширении газа AF > 0 и работа положительна (∆V > 0); при сжатии ∆V < 0 и А < 0. Заметим, что речь идет о работе, совер­шаемой газом, а не внешними силами. Работа всех внешних сил, наоборот, при расширении газа окажется отрицательной, а при сжатии — положительной.

Если при изменении объема давление газа изменяется, то сле­дует вычислять элементарную работу, соответствующую доста­точно малому изменению объема dV:

dA=pdV (10.2)

Проинтегрировав (10.2), получим работу, совершаемую газом:

В качестве примера найдем работу идеального газа при изотер­мическом процессе. Для этого подставим в формулу (10.3) вместо давления его выражение из уравнения Менделеева — Клапейрона:

Получим

Здесь m — масса газа, М — молярная масса (масса моля), Т — термодинамическая температура, Д = 8,31 Дж/(моль • К) — мо­лярная газовая постоянная.

Из уравнения (10.3) ясно, что работа, совершаемая газом, гра­фически определяется как площадь криволинейной трапеции в координатах давление — объем (рис. 10.3). Из рисунка, на кото­ром представлены графики двух различных процессов с одинако­вым начальным и конечным состояниями, видно, что работа зави­сит от процесса. Так, работа А1 (рис. 10.3, а) больше, чем работа А2 (рис. 10.3, б).

Закон сохранения энергии для тепловых процессов формули­руется как первое начало термодинамики. Количество тепло­ты, переданное системе, идет на изменение внутренней энер­гии системы и совершение системой работы:

Под внутренней энергией системы понимают сумму кинети­ческой и потенциальной энергий частиц, из которых состоит сис­тема.

Внутренняя энергия U является функцией состояния системы и для данного состояния имеет вполне определенное значение; ∆U есть разность двух значений внутренней энергии, соответствую­щих конечному и начальному состояниям системы: ∆U = U2 — U1

Количество теплоты Q, как и работа, является функцией про­цесса, а не состояния. И количество теплоты, и работу нельзя вы­разить в виде разности двух значений какого-либо параметра в конечном и начальном состояниях. В связи с этим Q и А в (10.6) записаны без знака приращения ∆.

Для достаточно малых значений Q, А и малых приращений U используют соответственно обозначения δQ, δА и dU, подчерки­вая этим отличие понятий количества теплоты и работы от внут­ренней энергии.

Ради упрощения в дальнейшем используются одинаковые обо­значения (dQ, dA и dU), однако следует помнить различие этих

физических величин. С учетом изложенного первое начало термо­динамики можно записать в виде:

Значения Q, A, ∆U и dQ, dA, dU могут быть как положительными (теплота передается системе внешними телами, внутренняя энер­гия увеличивается, газ расширяется), так и отрицательными (теплота отнимается от системы, внутренняя энергия уменьшает­ся, газ сжимается).



Источник: //infopedia.su/18x161b6.html

Скорость кровотока в сосудах тела

Определение скорости кровотока

Кровь циркулирует по сосудам с определенной скоростью. От последней зависит не только артериальное давление и метаболические процессы, но и насыщение органов кислородом и необходимыми веществами.

Скорость кровотока (СК) – важный диагностический показатель. С его помощью определяется состояние всей сосудистой сети или отдельных ее участков. По ней же выявляются патологии различных органов.

Отклонение показателей скорости течения крови в сосудистой системе свидетельствует о спазмировании в ее отдельных участках, вероятности налипания холестериновых бляшек, образовании тромбов или повышении вязкости крови.

Закономерности явления

Скорость движения крови по сосудам зависит от количества времени, необходимого для ее прохождения по первому и второму кругу.

Измерение проводится несколькими способами. Один из наиболее распространенных – использование красителя флуоресцеина. Метод заключается во введении вещества в вену левой руки и определении временного промежутка, через который оно обнаруживается в правой.

Средний статистический показатель – 25-30 секунд.

Движение кровотока по сосудистому руслу изучает гемодинамика. В ходе исследований выявлено, что данный процесс является непрерывным в организме человека вследствие разницы давления в сосудах. Прослеживается течение жидкости от участка, где оно высокое, к участку с более низким. Соответственно, имеются места, отличающиеся наименьшей и наибольшей скоростью течения.

Определение значения производится при выявлении двух параметров, описанных ниже.

Объемная скорость

Важным показателем гемодинамических значений является определение объемной скорости кровотока (ОСК). Это количественный показатель жидкости, циркулирующей за определенный временной отрезок сквозь поперечное сечение вен, артерий, капилляров.

ОСК напрямую связана с имеющимся в сосудах давлением и сопротивлением, оказываемым их стенками. Минутный объем движения жидкости по кровеносной системе вычисляется по формуле, учитывающей эти два показателя.

Замкнутость русла дает возможность сделать вывод о том, что через все сосуды, включая крупные артерии и мельчайшие капилляры, в течение минуты протекает одинаковое по объему количество жидкости. Непрерывность этого потока также подтверждает данный факт.

Однако это не свидетельствует об одинаковом объеме крови во всех ответвлениях кровеносного русла на протяжении минуты. Количество зависит от диаметра определенного участка сосудов, что никак не влияет на снабжение кровью органов, так как общее количество жидкости остается одинаковым.

Методы измерения

Определение объемной скорости не так давно еще проводилось так называемыми кровяными часами Людвига.

Более эффективный метод – применение реовазографии. В основу способа положено отслеживание электрических импульсов, связанных с сопротивлением сосудов, проявляющемся в качестве реакции на воздействие тока с высокой частотностью.

При этом отмечается следующая закономерность: увеличение кровенаполнения в определенном сосуде сопровождается снижением его сопротивляемости, при уменьшении давления сопротивление, соответственно, увеличивается.

Эти исследования обладают высокой диагностической ценностью для выявления заболеваний, связанных с сосудами. Для этого выполняется реовазография верхних и нижних конечностей, грудной клетки и таких органов, как почки и печень.

Другой достаточно точный метод – плетизмография. Он представляет собой отслеживание изменений в объеме определенного органа, появляющихся в результате наполнения его кровью. Для регистрации этих колебаний используются разновидности плетизмографов – электрические, воздушные, водные.

Флоуметрия

Этот метод исследования движения кровотока основан на использовании физических принципов. Флоуметр прикладывается к обследуемому участку артерии, что позволяет осуществлять контроль над скоростью кровотока при помощи электромагнитной индукции. Специальный датчик фиксирует показания.

Индикаторный метод

Использование этого способа измерения СК предусматривает введение в исследуемую артерию или орган вещества (индикатора), не вступающего во взаимодействие с кровью и тканями.

Затем через одинаковые временные отрезки (на протяжении 60 секунд) в венозной крови определяется концентрация введенного вещества.

Эти значения используются для построения кривой линии и расчета объема циркулирующей крови.

Данный метод широко применяется с целью выявления патологических состояний сердечной мышцы, мозга и других органов.

Линейная скорость

Показатель позволяет узнать скорость течения жидкости по определенной длине сосудов. Иными словами, это отрезок, который преодолевают компоненты крови в течение минуты.

Линейная скорость изменяется в зависимости от места продвижения элементов крови — в центре кровяного русла или непосредственно у сосудистых стенок. В первом случае она максимальная, во втором – минимальная. Это происходит в результате трения, действующего на компоненты крови внутри сети сосудов.

Скорость на разных участках

Продвижение жидкости по кровеносному руслу напрямую зависит от объема исследуемой части. Так, например:

  1. Самая высокая скорость крови наблюдается в аорте. Это объясняется тем, что тут самая узкая часть сосудистого русла. Линейная скорость крови в аорте — 0.5 м/сек.
  2. Скорость движения по артериям составляет около 0.3 м/секунду. При этом отмечаются практически одинаковые показатели (от 0.3 до 0.4 м/сек) как в сонных, так и в позвоночных артериях.
  3. В капиллярах кровь движется с наименьшей скоростью. Это происходит вследствие того, что суммарный объем капиллярного участка во много раз превышает просвет аорты. Уменьшение доходит до 0.5 м/сек.
  4. Кровь течет по венам со скоростью 0.1- 0.2 м/сек.

Диагностическая информативность отклонений от указанных значений заключается в возможности выявить проблемную зону в венах. Это позволяет своевременно устранить или предотвратить развивающийся в сосуде патологический процесс.

Определение линейной скорости

Использование ультразвука (эффект Доплера) позволяет с точностью определить СК в венах и артериях.

Сущность метода определения скорости данного типа в следующем: на проблемный участок прикрепляют специальный датчик, узнать нужный показатель позволяет изменение частотности звуковых колебаний, отражающих процесс течения жидкости.

Высокая скорость отражает низкую частоту звуковых волн.

В капиллярах скорость определяется с использованием микроскопа. Наблюдение ведется за продвижением по кровяному руслу одного из эритроцитов.

Другие методы

Разнообразие методик позволяет выбрать такую процедуру, которая помогает быстро и точно исследовать проблемный участок.

Индикаторный

При определении линейной скорости также используется индикаторный способ. Применяются меченные радиоактивными изотопами эритроциты.

Процедура предусматривает введение в вену, расположенную в локте, индикаторного вещества и прослеживание его появления в крови аналогичного сосуда, но в другой руке.

Формула Торричелли

Еще одним методом является применение формулы Торричелли. Здесь учитывается свойство пропускной способности сосудов. Есть закономерность: циркуляция жидкости выше в том участке, где имеется наименьшее сечение сосуда. Такой участок — аорта.

Самый широкий суммарный просвет в капиллярах. Исходя из этого, максимальная скорость в аорте (500 мм/сек), минимальная – в капиллярах (0.5 мм/сек).

Использование кислорода

При измерении скорости в легочных сосудах прибегают к особому методу, позволяющему определить ее при помощи кислорода.

Пациенту предлагают сделать глубокий вдох и задержать дыхание. Время появления воздуха в капиллярах уха позволяет с помощью оксиметра определить диагностический показатель.

Средняя для взрослых и детей линейная скорость: прохождение крови по всей системе за 21-22 секунды. Данная норма характерна для спокойного состояния человека. Деятельность, сопровождаемая тяжелой физической нагрузкой, сокращает этот временной промежуток до 10 секунд.

Кровообращение в организме человека — это движение главной биологической жидкости по сосудистой системе. О важности данного процесса говорить не приходится. От состояния кровеносной системы зависит жизнедеятельность всех органов и систем.

Определение скорости кровотока позволяет своевременно выявить патологические процессы и устранить их с помощью адекватного курса терапии.

Источник: //prososud.ru/krovosnabzhenie/skorost-krovotoka.html

Методы определения скорости кровотока

Определение скорости кровотока

Определение такого важного параметра , как скорость кровотока крайне важно для исследования гемодинамики конкретного участка сосудистого русла либо определенного органа. При изменении его можно говорить о наличие патологических сужении на протяжении сосуда, препятствий току крови (пристеночные тромбы, атеросклеротические бляшки),повышенной вязкости крови.

В настоящее время неинвазивная, объективная оценка кровотока по сосудам разного калибра является самой актуальной задачей современной ангиологии. От успеха в ее решении зависит успех ранней диагностики таких сосудистых заболеваний, как диабетическая микроангиопатия, синдром Рейно, различных окклюзий и стенозов сосудов.

Как происходит измерение скорости кровотока в сосудах?

Измерение скорости кровотока в сосудах производится с применением различных методик.

Одной из самых точных и достоверных результатов даёт измерение, произведённое с помощью метода ультразвуковой доплеровской флоуметрии аппаратом Минимакс-Допплер.

Данные, полученные при использовании оборудования Минимакс, являются основой для оценки состояния обследуемого и учитывается при определении диагноза.

Скорость кровотока в сосудах ногтевого ложа — один из наглядных показателей качества микроциркуляции крови в организме человека. Сосуды ногтевого ложа имеют малое поперечное сечение и состоят не только из капилляров, а также из микроскопических артериол.

При проблемах, связанных с кровеносной системой, эти капилляры и артериолы страдают первыми. Конечно, судить о состоянии всей системы только лишь на основании исследования кровообращения в области ногтевого ложа нельзя, но стоит обратить внимание, если движение крови в этой области является слишком низким или высоким.

В медицине для получения наиболее достоверных сведений проводят измерения параметров кровообращения на больших участках кровообращения.

ПОДРОБНОСТИ:   Лейкоциты в крови понижены причины у женщин

Сп минимакс

Определение скорости кровотока

Скорость кровотока — это скорость передвижения элементов крови по кровеносному руслу за определенную единицу времени. В практике специалисты выделяют линейную скорость и объемную скорость кровотока.

Один из главных параметров, характеризующий функциональность кровеносной системы организма. Этот показатель зависит от частоты сокращений сердечной мышцы, количества и качественного состава крови, величины сосудов, артериального давления, возраста и генетических особенностей организма.

Типы скорости кровотока

Линейная скорость- расстояние, проходимое частицей крови по сосуду за определенный период времени. Оно напрямую зависит от суммы площадей поперечного сечения сосудов, составляющих данный участок сосудистого русла.

Следовательно, аорта- самый узкий участок кровеносной системы и в ней самая высокая скорость кровотока, достигающая 0,6 м/с. Самым «широким» местом являются капилляры, т. к. их общая площадь в 500 раз больше площади аорты, скорость кровотока в них 0,5 мм/с. , что обеспечивает прекрасный обмен веществ между капиллярной стенкой и тканями.

Объемная скорость кровотока — общее количество крови поступающей через поперечное сечение сосуда за определенный промежуток времени.

Данный вид скорости определяется:

  • разностью давления на противоположных концах сосуда ,которая формируется артериальным и венозным давлением;
  • сопротивлением сосудов току крови, зависящим от диаметра сосуда, его длины, вязкости крови.

Важность и острота проблемы

Определение такого важного параметра , как скорость кровотока крайне важно для исследования гемодинамики конкретного участка сосудистого русла либо определенного органа. При изменении его можно говорить о наличие патологических сужении на протяжении сосуда, препятствий току крови (пристеночные тромбы, атеросклеротические бляшки),повышенной вязкости крови.

В настоящее время неинвазивная, объективная оценка кровотока по сосудам разного калибра является самой актуальной задачей современной ангиологии. От успеха в ее решении зависит успех ранней диагностики таких сосудистых заболеваний, как диабетическая микроангиопатия, синдром Рейно, различных окклюзий и стенозов сосудов.

Перспективный помощник

Самым перспективным и безопасным является определение скорости кровотока УЗ-методом, построенным на эффекте Доплера.

Одним из последних представителей УЗ доплеровских аппаратов является Допплер- аппарат, выпускаемый компанией Минимакс ,зарекомендовавший себя на рынке как надежный, качественный и долгосрочный помощник в определении сосудистой патологии.

Для чего проводят измерение скорости движения крови?

Измерение скорости кровотока имеет важно для диагностической медицины. Благодаря анализу данных, полученных в результате измерений можно определить:

  • состояние сосудов, показатель вязкости крови;
  • уровень снабжения кровью мозга и других органов;
  • сопротивление движению в обоих кругах кровообращения;
  • уровень микроциркуляции;
  • состояние коронарных сосудов;
  • степень сердечной недостаточности.

Скорость кровотока в сосудах, артериях и капиллярах не является постоянной и одинаковой величиной: самая большая скорость — в аорте, самая маленькая — внутри микрокапилляров.

Для чего проводят измерение скорости кровотока в сосудах ногтевого ложа?

Скорость кровотока в сосудах ногтевого ложа — один из наглядных показателей качества микроциркуляции крови в организме человека. Сосуды ногтевого ложа имеют малое поперечное сечение и состоят не только из капилляров, а также из микроскопических артериол.

При проблемах, связанных с кровеносной системой, эти капилляры и артериолы страдают первыми. Конечно, судить о состоянии всей системы только лишь на основании исследования кровообращения в области ногтевого ложа нельзя, но стоит обратить внимание, если движение крови в этой области является слишком низким или высоким.

В медицине для получения наиболее достоверных сведений проводят измерения параметров кровообращения на больших участках кровообращения.

Источник: //minimax.ru/articles/general-information/blood-flow.html

WikiMedSpravka.Ru
Добавить комментарий