Антигены вирусов

Антигены, свойства. Антигенная структура бактерий. Антигены вирусов. Аутоантигены

Антигены вирусов

АГ-это любые генетич.чужеродные для данного орг-ма в-ва, которые, попав во внутр.

среду, выаывают ответную специфическую иммунологическую реакцию: синтез антител, появление сенсибилизированных лимфоцитов или возникновение толерантности к этому веществу, гиперчувствительности немедленного и замедленного типов иммунологической памяти. Антитела, вырабатываемые в ответ на введение антигена, специфически взаимодействуют с этим антигеном, образуя комплекс антиген антитело.

Антигены, вызывающие полноценный иммунный ответ, называются полными антигенами. Эго органические вещества микробного, растительного и животного происхождения. Химические элементы, простые и сложные неорганические соединения антигенностью не обладают.

Антигенами являются также бактерии, грибы, простейшие, вирусы, клетки и ткани животных, попавшие во внутреннюю среду макроорганизма, а также клеточные стенки, цитоплазма` тические мембраны, рибосомы, митохондрии, микробные токсины, экстракты гельминтов, яды многих змей и пчел, природные белковые вещества, некоторые полисахаридные вещества микробного происхождения, растительные токсины и т.д.

Некоторые вещества самостоятельно не вызывают иммунного ответа, но приобретают эту способность при конъюгации с вьгсокомолекулярными белковыми носителями или в смеси с ними. Такие вещества называют неполными антигенами, или гаптенами. Гаптенами могут быть химические вещества с малой молекулярной массой или более сложные химические вещества, не обладающие свойствами полного антигена: некоторые бактериальные полисахариды, полипептид туберкулезной палочки (РРД), ДНК, РНК, липиды, пептиды. Гаптен является частью полного или конъюгированного антигена. Гаптены иммунного ответа не ВЫзывают, но они вступают в реакцию с сыворотками, содержащими специфические к ним антитела.

Характерными свойствами антигенов являются антигенность, иммуногенность и специфичность.

Антигенность — это потенциальная способность молекулы антигена активировать компоненты иммунной системы и специфически взаимодействовать с факторами иммунитета (антитела, клонэффекторных лимфоцитов).

При этом компоненты иммунной системы взаимодействуют не со всей молекулой антигена, а только с ее небольшим участком, который получил название антигенной детерминанты, или эпитопа.

Иммуногеннос/пь — потенциальная способность антигена вызывать по отношению к себе в макроорганизме специфический продуктивный ответ. Специфичностью называют способность антигена индуцировать

иммунный ответ к строго определенному эпитопу. Специфичность

антигена во многом определяется свойствами составляющих его эпитопов.

В структуре бактериальной клетки различают жгутиковые, соматические, капсульные и некоторые другие антигены (рис. 10.2).

Жгутиковые, или Н-антигены, локализуются в их жгутиках и пред-

ставляют собой эпитопы сократительного белка флагеллина. При

нагревании флагеллин денатурирует и Н-антиген теряет свою

специфичность. Фенол не действует на этот антиген.

Соматический, или О-антиген, связан с клеточной стенкой бактерий. Его основу составляют липополисахариды. О-антиген термостабилен и не разрушается при длительном кипячении.

Капсульные, или К-антигены, встречаются у бактерий, образующих капсулу. Как правило, К-антигены состоят из кислых полисахаридов (уроновые кислоты).

В структуре вирусной частицы различают ядерные (или коро-

вые), капсидные (или оболочечные) и суперкапсидные антигены.

На поверхности некоторых вирусных частиц встречаются особые

V-антигены — гемагглютинин и фермент нейраминидаза. Часть из них вирусоспецифические, кодируются в нуклеиновой кислоте вируса.

Другие, являющиеся компонентами клетки хозяина (углеводы, ли-

пиды), формируют суперкапсид вируса при его рождении путем

почкования.

Антигенный состав вириона зависит от строения самой вирус-

ной частицы. В просто организованных вирусах антигены ассоци-

ированы с нуклеопротеидами. Эти вещества хорошо растворяются

в воде и поэтому обозначаются как S-антигены (от лат. solutio —

раствор). У сложноорганизованных вирусов часть антигенов свя-

зана с нуклеокапсидом, а другая находится во внешней оболочке,

или суперкапсиде.

Антигены многих вирусов отличаются высокой степенью из-

менчивости, что связано с постоянными мутациями в генетиче-

ском материале вирусов. Примером могут служить вирус гриппа,

ВИЧ и др.

Антигены групп крови человека

Антигены групп крови человека располагаются на цитоплаз-

матической мембране клеток, но наиболее легко определяются

на поверхности эритроцитов. Поэтому они получили название

≪эришроцитарные антигены≫. На сегодняшний день известно бо-

лее 250 различных эритроцитарных антигенов. Однако наиболее

важное клиническое значение имеют антигены системы АВО и Rh

(резус-фактор): их необходимо учитывать при проведении пере-

ливания крови, пересадке органов и тканей, предупреждении и

лечении иммуноконфликтных осложнений беременности и т.д.

На цитоплазматических мембранах практически всех клеток

макроорганизма обнаруживаются антигены гистосовместимости.

Большая часть из них относится к системе главного комплекса

гистосовместимости, или МНС (от англ. Main Hystocompatibility

Complex). Установлено, что антигены гистосовместимости играют

ключевую роль в осуществлении специфического распознавания

≪свой—чужой≫ и индукции приобретенного иммунного ответа,

определяют совместимость органов и тканей при транспланта-

ции в пределах одного вида и другие эффекты.

В 1948—1949 гг. видный отечественный микробиолог и имму-

нолог Л.А. Зильбер при разработке вирусной теории рака доказал

наличие антигена, специфичного для опухолевой ткани. Позже в

60-х годах XX века Г.И. Абелев (в опытах на мышах) и Ю.С. Тата-

ринов (при обследовании людей) обнаружили в сыворотке крови

больных первичным раком печени эмбриональный вариант сыво-

роточного альбумина — а-фетопротеин. К настоящему моменту

обнаружено и охарактеризовано множество опухольассоциирован-

ных антигенов. Однако не все опухоли содержат специфические

маркерные антигены, равно как и не все маркеры обладают стро-

гой тканевой специфичностью.

Опухольассоциированные антигены классифицируют по лока-

лизации и генезу. Различают сывороточные, секретируемые опухо-

левыми клетками в межклеточную среду, и мембранные. Последние

получили название опухолеспецифических трансплантационных ан-

тигенов, или TSTA (от англ. Tumor-Specific Transplantation Antigen).

Выделяют также вирусные, эмбриональные, нормальные гипер-

экспрессируемые и мутантные опухольассоциированные антиге-

ны. Вирусные — являются продуктами онковирусов, эмбриональные

в норме синтезируются в зародышевом периоде. Хорошо известен

а-фетопротеин (эмбриональный альбумин), нормальный протеин

тестикул {MAGE 1,2,3 и др.), маркеры меланомы, рака молочной

железы и др. Хорионичсский гонадотропин, в норме синтезируе-

мый в плаценте, обнаруживается при хориокарциноме и других

опухолях. В меланоме в большом количестве синтезируется нор-

мальный фермент тирозиназа. Из мутантных белков следует от-

метить протеин Ras — ГТФ-связывающий белок, участвующий в

трансмембранном проведении сигнала. Маркерами рака молочной

и поджелудочной желез, карцином кишечника являются модифи-

цированные муцины (MUC 1, 2 и др.).

В большинстве случаев опухольассоциированные антигены

представляют собой продукты экспрессии генов, в норме вклю-

чаемых в эмбриональном периоде. Они являются слабыми имму-

ногенами, хотя в отдельных случаях могут индуцировать реакцию

цитотоксических Т-лимфоцитов (Т-киллеров) и распознаваться в

составе молекул МНС (HLA) I класса. Синтезируемые к опухоль-

ассоциированным антигенам специфические антитела не угнетают

рост опухолей.__

11. Практическое использование антигенов в медицине: вакцины, диагностикумы, аллергены. Получение, назначение.

Вакцинами называют иммунобиологические препараты, предназ_ наченные для создания активного специфического иммунитета Применяют их главным образом для профилактики, но иногда используют для лечения инфекционных болезней. Действующим началом вакцины является специфический антиген. В качестве антигена ИСПОЛЬЗУЮт

1) живые или инактивированныс микроорганй’змы (бактерии, вирусы);

2) вьщеленные из микроорганизмов специфические, так называемые протективные, антигены;

3) образуемые микроорганизмами антигенные вещества (вторичные метаболиты), играющие роль в патогенезе болезни (токсины); 4) химически синтезированные антигены, аналогичные природным;

5) антигены, полученные с помощью метода генетической инженерии.

На основе одного из этих антигенов конструируют вакцину, которая может в зависимости от природы антигена и формы препарата включать консервант, стабилизатор и активатор (адъювант).

В качестве консервантов применяют мертиолат (1:10 000), азид натрия, формальдегид (О,1-О,3 %) с целью подавления посторонней микрофлоры в процессе хранения препарата. Стабилизатор добавляют для предохранения от разрушения лабильных антигенов.

Например, к живым вакцинам добавляют сахарозожелатиновый агар или человеческий альбумин. Для повышения эффекта действия антигена к вакцине иногда добавляют неспецифический стимулятор-адъювант, активирующий иммунную систему.

В качестве адъювантов используют минеральные коллоиды (Аl(ОН)3‚ АlРО4‘)‚ полимерные вещества (липополисахаридьх, полисахарицы, синтетические полимеры). Они изменяют физикохимическое состояние антигена, создают депо антигена на мес

КЛАССИФИКАЦИЯ ВАКЦИН

Живые вакцины

.1)аттенуированные; '

2)дивергентные;
3)векторные рекомбинантные.

Неживые вакцины: 1)МОЛеКУлярные:

полученные путем биосинтеза;

полученные путем химического синтеза;

полученные методом генетической инженерии;

2) КоРПУСКулярные;

цельноклеточные, цельновирионные; субклетОчные, субвирионные;

синтетические, полусинтетические.

Ассциированные “

Живыеаттенуированные вакцины конструируются на основе ослабленных штаммов микроорганизмов, потерявших вирулентность, но сохранивших антигенные свойства. Такие штаммы получают методами селекции или генетической инженерии.

Иногда используют штаммы близкородственных в антигенном отношении, неболезнетворных для человека микроорганизмов (дивергентные штаммы), из которых получены дивергентные вакцины. Например, для прививки против оспы используют вирус оспы коров.

Живые вакцины при введении в организм приживляются, размножаются, вызывают генерализованный вакцинальный процесс и формирование специфического иммунитета к патогенному микроорганизму, из которого получен аттенуированный штамм.
Получают живые вакцины путем выращивания аттенуированных шТаммов на питательных средах, оптимальных для данного микроорганизма.

Бактериальные штаммы культивируют или в ферментерах на жидких питательных средах, или на твердых питательных средах; вирусные штаммы культивируют в куриных эмбрионах, первичнотрипсинизированных, перевиваемых культурах клеток Процесс ведут в асептических условиях.

Наиболее важные вакцины: бактериальные: туберкулезная(БЦЖ), чумная, туляремийная, сибиреязвенная, против ку-лихорадкики. Вирусные: оспенная(на основе вир. оСпы коров), коревая, полиомиелитная, против желтой лихорадки, гриппозная, паротитная.

Сущ-ют векторные рекомбинантные вакцины, которые получают методом генной инженерии. В геном вакцинного штамма встраивают ген чужеродного АГ. Пр: вирус оспенной вакцины с встроенным АГ вируса гепатита Б. Таким образом, вырабатывается иммунитет на 2 вируса.

Неживые

Корпускулярные– инактивированные физическими или хим. Способами культуры бактерий или вирусов. Инактивацию проводят в оптимальном режиме, чтобы штамм сохранил свою антигенность, но лишился жизнеспомобности. Их применяют для проф-ки коклюша, гриппа, гепатита А, клещевого энцефалита.

Субклеточные и субвирионные состоят из АГ комплексов, выделенных из бакткрий и вирусов после их разрушения. Примеры: против брюшного тифа(на основе О, Н и Vi – антигенов),сиб.язвы(на основе капсульного АГ)

Молекулярные это специфические АГ в молекулярной форме, полученные методом ген.инженерии, хим.и био.синтеза. примером может служить анатоксин – токсин, сохраняющий антигенные св-ва, но теряющий токсичность вследствие обезвреживания его формалином.

Примеры: столбнячный, ботулиновый, дифтерийный анатоксины.

Источник: //cyberpedia.su/6xb94e.html

Вирусные антигены. Виды антигенов у вирусов

Антигены вирусов

Совершенствование или создание новых вакцин требует знаний структурных и функциональных особенностей вирусных антигенов, различаемых иммунной системой организма.

Вирусными антигенами называются продукты вирусспецифического синтеза, несущие признаки чужеродной генетической информации и вызывающие иммунный ответ.

К ним относятся структурные и неструктурные вирусные белки.

Защита от вирусной инфекции зависит от выраженности иммунного ответа на антигены, расположенные на поверхности вирионов или инфицированных клеток. Иммунный ответ на неструктурные вирусные антигены играет меньшую роль в защите от инфекции.

Однако у герпесвирусов, например, клеточный иммунный ответ индуцируется множеством вирусспецифических белков, не входящих в структуру вирионов. Белки герпесвирусов эксперссируются каскадно и большинство нестук-турных белков синтезируется на ранней стадии репликации вируса.

После про-цессинга они презентируются МНС классом I (главным комплексом гистосов-местимости, класс I) на плазматической мембране инфицированных клеток и распознаются специфическими цитотоксическими Т-клетками.

Поэтому инфицированные клетки могут различаться эффекторными цитотоксическими Т-лимфоцитами до завершения цикла вирусной репликации.

Каждый вирус представляет собой сложную смесь антигенов, определяемую в первую очередь структурными белками. Являясь сложными корпускулярными антигенами вирусы обычно вызывают выраженный иммунный ответ и большая часть их белков способна вызывать синтез специфических антител. Вирусные белки неравнозначны по своей антигенной активности.

Наиболее явные и доступные мишени для иммунного ответа — белки, расположенные на поверхности вирусных частиц. Это прежде всего относится к вирусным гликопротеинам, расположенным на поверхности вирусных частиц, и экспрессированным на поверхности зараженных клеток.

Гликопротеины поверхности оболочечных вирусов и капсидные белки безоболочечных вирусов являются главными протективными антигенами.

Под специфичностью вирусного антигена подразумевают его способность избирательно реагировать с антителами или сенсибилизированными лимфоцитами, являющимися ответом на введение данного антигена. Участок антигена, который узнается специфическим лимфоцитом, и с которым впоследствии взаимодействует специфическое антитело, называется антигенной детерминантой.

Иммунологическая специфичность определяется не всей молекулой антигена, а лишь входящими в ее состав антигенными детерминантами (эпитопами). Участки вирусного белка, индуцирующие образование антител и специфически связывающиеся с ними, принято называть антигенными участками (доменами).

Антитела соответствующей специфичности образуются к каждой антигенной детерминанте. Антитела к определенной детерминанте реагируют только с ней или с другой очень сходной структурой. Специфичность антигена определяется совокупностью детерминант, а его валентность — количеством однородных антигенных детерминант.

Антигенность детерминант зависит от их пространственной структуры и размера молекулы антигена.

Антигенные детерминанты состоят обычно из 10—20 аминокислотных остатков и содержат гидрофильные группы. Наиболее гидрофильными аминокислотами являются лизин, аргинин, аспарагиновая кислота и глютаминовая кислота.

Считается, что те участки молекулы белка, в которых их содержание относительно велико, предпочитают водное окружение и поэтому располагаются на поверхности. Различают линейные (непрерывные) и конформационные (прерывистые) детерминанты.

Антитела образуются преимущественно к конформационным детерминантам, расположенным, как правило, на поверхности вирионов, и зависят от третичной структуры молекулы антигена.

Антигенная и иммуногенная активность вирусов определяется, главным образом, конформационными эпитопами. Разные антитела различают специфические антигенные участки вирусных антигенов. Например, прикрепительный гликопротеин (HN) вируса парагриппа имеет, по крайней мере, 6 антигенных сайтов, три из которых различаются нейтрализующими антителами.

Денатурация белков приводит к потере некоторых конформационных детерминант, обнажая ранее экранированные детерминанты. В результате денатурации белки частично или полностью изменяют антигенную специфичность, что может отразиться на иммунном ответе.

Вирионные белки разных вирусов различаются типоспецифичностью и вариабельностью. Одни из них обладают высокой вариабельностью, другие характеризуются консервативностью.

Группоспецифические антигены являются высококонсервтивными, находятся обычно внутри вирионов и могут быть сходными у нескольких представителей рода данного семейства вирусов.

Например, субвирусные частицы 12S вируса ящура содержат высококонсервативный белок, который выявляется моноклональными антителами одной специфичности у шести из семи известных типов вируса. Однако иммунизация ими не сопровождалась образованием ВН-антител.

Типоспецифические антигены связаны с вариабельными областями белков, обычно расположенными в наружных частях вирионов, и обладают узкой специфичностью, присущей одной группе вирусов.

– Также рекомендуем “Ответ организма на антигены вируса. Антитела на антигены вируса.”

Оглавление темы “Культивирование вирусов. Антигены вирусов и иммуннитет.”:
1. Культуры клеток на микроносителях. Применение культуры клеток на микроносителях в вирусологии.
2. Суспензии постоянных линий клеток. Размножение вирусов в суспензии постоянных линий клеток.
3. Особенности суспензий постоянных линий клеток. Выращивание вирусов в суспензии постоянных линий клеток.
4. Опыт культивирования вирусов в суспензиях постоянных линий клеток. Технологии в вирусологии.
5. Вирусные антигены. Виды антигенов у вирусов.
6. Ответ организма на антигены вируса. Антитела на антигены вируса.
7. Нейтрализирующие антигенные участки вируса. Гликопротеины вируса.
8. Тип репродукции вируса и его антигенный состав. Инфекционность и тип репродукции вируса.
9. Противовирусный иммунитет. Вирусы и иммунная система.
10. Структура иммунной системы. Организация иммунной системы.

Источник: //meduniver.com/Medical/Microbiology/923.html

Антигены вирусов

Антигены вирусов

В структуре вирусной частицы различают несколько групп антигенов: ядерные (или коровые), капсидные (или оболочечные) и суперкапсидные. На поверхности некоторых вирусных частиц встречаются особые V-антигены — гемагглютинин и фермент нейраминидаза.

Антигены вирусов различаются по происхождению. Часть из них — вирусоспецифические. Информация об их строении картирована в нуклеиновой кислоте вируса.

Другие антигены вирусов являются компо­нентами клетки хозяина (углеводы, липиды),] они захватываются во внешнюю оболочку ви­руса при его рождении путем почкования.

Антигенный состав вириона зависит от стро­ения самой вирусной частицы. Антигенная специфичность простоорганизованных вирусов связана с рибо- и дезоксирибонуклеопротеинами.

Эти вещества хорошо растворяются I в воде и поэтому обозначаются как S-антигены (от лат. solutio — раствор).

У сложноорга- низованных вирусов часть антигена связанаснуклеокапсидом, а другая — локализуется во внешней оболочке — суперкапсиде.

Антигены многих вирусов отличаются вы­сокой степенью изменчивости. Это связано с постоянным мутационным процессом, кото­рый претерпевает генетический аппарат вирус­ной частицы. Примером могут служить вирус гриппа, вирусы иммунодефицитов человека.

60. Учение об иммунитете. Определение и сущность понятия “иммунитет”. Основные формы иммунного ответа.

Иммунитет – это способ защиты организма от генетически чужеродных веществ – антигенов экзогенного и эндогенного происхождения, направленный на поддержание и сохранение гомеостаза, структурной и функциональной целостности организма, биологической (антигенной) индивидуальности каждого организма и вида в целом.

Виды иммунного ответа
Иммунный ответ представляет собой реакцию организма на внедрение в него микробов или различных ядов. В целом, любое вещество, чья структура отличается от структуры тканей человека способно вызвать иммунный ответ. Исходя из механизмов, задействованных в его реализации, иммунный ответ может быть различным.

Во-первых, различаем специфический и неспецифический иммунный ответ.
Неспецифический иммунный ответ – это первый этап борьбы с инфекцией он запускается сразу же после попадания микроба в наш организм. В его реализации задействованы система комплимента, лизоцим, тканевые макрофаги.

Неспецифический иммунный ответ практически одинаков для всех типов микробов и подразумевает первичное разрушение микроба и формирование очага воспаления. Воспалительная реакция это универсальный защитный процесс, который направлен на предотвращение распространения микроба. Неспецифический иммунитет определяет общую сопротивляемость организма.

Люди с ослабленным иммунитетом чаще болеют различными заболеваниями.

Специфический иммунитет это вторая фаза защитной реакции организма. Основной характеристикой специфического иммунного ответа является распознавание микроба и выработка факторов защиты направленных специально против него.

Процессы неспецифического и специфического иммунного ответа пересекаются и во многом дополняют друг друга. Во время неспецифического иммунного ответа часть микробов разрушается, а их части выставляются на поверхности клеток (например, макрофагов).

Во второй фазе иммунного ответа клетки иммунной системы (лимфоциты) распознают части микробов, выставленные на мембране других клеток, и запускают специфический иммунный ответ как таковой.

Специфический иммунный ответ может быть двух типов: клеточный и гуморальный.

Клеточный иммунный ответ подразумевает формирование клона лимфоцитов (К-лимфоциты, цитотоксические лимфоциты), способных разрушать клетки мишени, мембраны которых содержат чужеродные материалы (например, вирусные белки).

Клеточный иммунитет задействован в ликвидации вирусной инфекции, а также таких типов бактериальных инфекций как туберкулез, проказа, риносклерома. Раковые клетки тоже разрушаются активированными лимфоцитами.

Гуморальный иммунный ответ опосредован В-лимфоцитами, которые после распознания микроба начинают активно синтезировать антитела по принципу один тип антигена – один тип антитела. На поверхности одного микроба может быть множество различных антигенов, поэтому обычно вырабатывается целая серия антител, каждое из которых при этом направлено на определенный антиген.

Антитела (иммуноглобулины, Ig) – это молекулы белков, способные прилипать к определенной структуре микроорганизма, вызывая его разрушение или скорейшее выведение из организма. Теоретически возможно формирование антител против любого химического вещества, имеющего достаточно большую молекулярную массу.

Существует несколько типов иммуноглобулинов, каждый из которых выполняет специфическую функцию. Иммуноглобулины типа А (IgA) синтезируются клетками иммунной системы и выводятся на поверхность кожи и слизистых оболочек. В больших количествах IgA содержатся во всех физиологических жидкостях (слюна, молоко, моча).

Иммуноглобулины типа А обеспечивают местный иммунитет, препятствуя проникновению микробов через покровы тела и слизистые оболочки.

Не нашли то, что искали? Воспользуйтесь поиском:

Источник: //studopedia.ru/4_57264_antigeni-virusov.html

Антигены вирусов и бактерий

Антигены вирусов

Для характеристики микроорганизмов выделяют родовую, видовую, групповую и типовую специфичность антигенов. Наиболее точная дифференциация осуществляется с использованием моноклональных антител (МКА), распознающих только одну антигенную детерминанту.

Обладая сложным химическим строением, бактериальная клетка представляет целый комплекс антигенов. Антигенными свойствами обладают жгутики, капсула, клеточная стенка, цитоплазматическая мембрана, рибосомы и другие компоненты цитоплазмы, токсины, ферменты. Основными видами бактериальных антигенов являются:

– соматические или О- антигены (у грамотрицательных бактерий специфичность определяется дезоксисахарами полисахаридов ЛПС);

– жгутиковые или Н- антигены (белковые);

– поверхностные или капсульные К- антигены.

Выделяют протективные антигены, обеспечивающие защиту (протекцию) против соответствующих инфекций, что используется для создания вакцин.

Любой микроорганизм (бактерии, грибы, вирусы) представляет собой комплекс антигенов.

По специфичности микробные антигены делятся на:

· перекрестно-реагирующие (гетероантигены) – это антигены общие с антигенами тканей и органов человека. Они имеются у многих микроорганизмов и рассматриваются как важный фактор вирулентности и пусковой механизм развития аутоиммунных процессов;

· группоспецифические – общие у микроорганизмов одного рода или семейства;

· видоспецифические – общие у разных штаммов одного вида микроорганизмов;

· вариантспецифические (типоспецифические) – встречаются у отдельных штаммов внутри вида микроорганизмов. По наличию тех или иных вариантспецифических антигенов микроорганизмы внутри вида делят на варианты по антигенному строению – серовары.

По локализации антигены бактерий делятся на:

· целлюлярные (связанные с клеткой),

· экстрацеллюлярные (не связанные с клеткой).

Среди целлюлярных антигенов основными являются: соматический – О-антиген (глюцидо-липоидо-полипепдидный комплекс), жгутиковый – Н-антиген (белок), поверхностные – капсульные – К-антиген, Vi-антиген. Экстрацеллюлярные антигены – это продукты, секретируемые бактериями во внешнюю среду, в том числе антигены экзотоксинов, ферментов агрессии и защиты, и другие.

Антигены вирусов

В структуре вирусной частицы различают несколько групп антигенов:

· ядерные (или коровые)

· капсидные (или оболочечные)

· суперкапсидные.

На поверхности некоторых вирусных частиц встречаются особые V-антигены- гемагглютинин и фермент нейраминидаза.

Антигены вирусов различаются по происхождению. Часть из них – вирусоспецифические. Информация об их строении картирована в нуклеиновой кислоте вируса. Другие антигены вирусов являются компонентами клетки хозяина (углеводы, липиды), они захватываются во внешнюю оболочку вируса при его рождении путем почкования.

Антигенный состав вириона зависит от строения самой вирусной частицы. Антигенная специфичность простоорганизованныхвирусов связана с рибо- и дезоксирибонуклеопротеинами. Эти вещества хорошо растворяются в воде и поэтому обозначаются как S-антигены ( от лат. Solution- раствор).

У сложноорганизованных вирусов часть антигена связана с нуклеокапсидом, а другая – локализуется во внешней оболочке – суперкапсиде. Антигены многих вирусов отличаются высокой степенью изменчивости. Это связано с постоянным мутационным процессом, который претерпевает генетический аппарат вирусной частицы.

Примером могут служить вирус гриппа, вирысы иммунодефицитов человека.

14. Антигены гистосовместимости. На цитоплазматических мембранах практически всех клеток макроорганизма обнаруживаются антигены гистосовместимости. Большая часть из них относится к системе главного комплекса гистосовместимости, или МНС (аббр. от англ. Major histocompatibility complex).

По химической природе антигены гистосовместимости представляют собой гликопротеиды, прочно связанные с цитоплазматической мембраной клеток. Их отдельные фрагменты имеют структурную гомологию с молекулами иммуноглобулинов и поэтому относятся к единому суперсемейству.

Различают два основных класса молекул МНС. Условно принято, что МНС I класса индуцирует преимущественно клеточный иммунный ответ, а МНС II класса – гуморальный.

МНС I класса состоит из двух нековалентно связанных полипептидных цепей с разной молекулярной массой: тяжелой альфа-цепи и легкой бета-цепи. Альфа-цепь имеет внеклеточный участок с доменным строением (альфа1,альфа2,альфа3-домены), трансмембранный и цитоплазматический.

Бета-цепь представляет собой бета-2-микроглобулин, который «налипает» на альфа3-домен после экспрессии альфа-цепи на цитоплазматической мембране клетки.

Для МНС I класса характерна высокая скорость биосинтеза – процесс завершается за 6 часов. Этот комплекс экспрессируется на поверхности практически всех клеток, кроме эритроцитов и клеток ворсинчатого трофобласта. Плотность МНС I класса достигает 7000 молекул на клетку, и они покрывают около 1% ее поверхности.

У человека МНС обозначили как HLA(аббр. от англ. Human Leukocyte Antigen), так как он ассоциирован с лейкоцитами.

В настоящее время у человека различают более 200 различных вариантов HLA I класса. Они кодируются генами, картированными в трех основных сублокусах 6-й хромосомы и наследуются и проявляются независимо: HLA-A, HLA-B, HLA-C. Локус А объединяет более 60 вариантов, В-130, а С- около 40.

Основная биологическая роль HLA I класса состоит в том, что они определяют биологическую индивидуальность («биологический паспорт») и являются маркерами «своего» для иммунокомпетентных клеток.

Заражение клетки вирусом или мутация изменяют структуру HLA I класса.Содержащая чужеродные или модифицированные пептиды молекула МНС I класса имеет нетипичную для данного организма структуру и является сигналом для активации Т-киллеров (CD8+ – лимфоциты).

Клетки, отличающиеся по I классу, уничтожаются как чужеродные.

В структуре и функции МНС II класса есть ряд принципиальных отличий. Во-первых, они имеют более сложное строение. Комплекс образован двумя нековалентно связанными полипептидными цепочками (альфа-цепь и бета-цепь), имеющими сходное доменное строение. Альфа-цепь имеет один глобулярный участок, а бета-цепь – два.

Обе цепи как трансмембранные пептиды состоят из трех участков – внеклеточного, трансмембранного и цитоплазматического. Во-вторых, «щель Бьоркмана» в МНС II класса образована одновременно обеими цепочками.

Она вмещает больший по размеру олигопептид (12-25 аминокислотных остатков), причем последний полностью «скрывается» внутри этой щели и в таком состоянии не обнаруживается специфическими антителами.В-третьих, МНС II класса включает в себя пептид, захваченный из внеклеточной среды путем эндоцитоза, а не синтезированный самой клеткой.

В-четвертых, МНС II класса экспрессируется на поверхности ограниченного числа клеток: дендритных, В-лимфоцитах, Т-хелперах, активированных макрофагах, тучных, эпителиальных и эндотелиальных клетках. Обнаружение МНС II класса на нетипичных клетках расценивается в настоящее время как иммунопатология.

Биосинтез МНС II класса протекает в эндоплазматическом ретикулуме, образующийся димерный комплекс затем встраивается в цитоплазматическую мембрану. До включения в него пептида комплекс стабилизируется шапероном (калнексином). МНС II класса экспрессируется на мембране клетки в течение часа после эндоцитоза антигена.

У человека антиген гистосовместимости получил название HLA II класса. По имеющимся данным, человеческому организму свойственен чрезвычайно высокий полиморфизм HLA II класса, который в большей степени определяется особенностями строения бета-цепи. В состав комплекса входят продукты трех основных локусов: HLA DR, DQ, DP.

При этом локус DR объединяет около 300 аллельных форм, DQ – около 400, а DP – около 500. Биологическая роль МНС II класса чрезвычайно велика. Фактически этот комплекс участвует в индукции приобретенного иммунного ответа.

Фрагменты молекулы антигена экспрессируются на цитоплазматической мембране особой группы клеток, которая получила название антигенпрезентирующих клеток (АПК). Это еще более узкий круг среди клеток, способных синтезировать МНС II класса. Наиболее активной АПК считается дендритная клетка, затем – В-лимфоцит и макрофаг.

Структура МНС II класса с включенным в него пептидом в комплексе с ко-факторными молекулами CD-антигенов воспринимается и анализируется Т-хелперами (CD4+-лимфоциты).

В случае принятия решения о чужеродности включенного в МНС II класса пептида Т-хелпер начинает синтез соответствующих иммуноцитокинов, и включается механизм специфического иммунного реагирования. В итоге активируется пролиферация и окончательная дифференцировка антигенспецифичных клонов лимфоцитов и формирование иммунной памяти. Помимо описанных выше антигенов гистосовместимости, идентифицирован III класс молекул МНС. Локус, содержащий кодирующие их гены, вклинивается между I и II классом и разделяет их. К МНС III класса относятся некоторые компоненты (С2, С4), белки теплового шока, факторы некроза опухоли и др.

Просмотров 2094 Эта страница нарушает авторские права

Источник: //allrefrs.ru/5-2830.html

Антигены бактерий и вирусов

Антигены вирусов

Наиболее важными для изучения особенностей иммунного ответа являются антигены микроорганизмов — бактерий и вирусов.

В качестве антигенов у бактерий выступают белки, полисахариды, липополисахариды, липопротеиды, нуклеопротеиды и тому подобное. У микроорганизмов различают группоспецифические, видоспецифические и типоспецифические (вариантные) антигены.

Первые встречаются у разных представителей одного рода или семьи; вторые — у разных представителей одного вида; третьи — у отдельных вариантов одного вида, в результате чего их разделяют на серовары (серологические варианты).

Так, у Streptococcus pneumoniaе различают 80 сероваров.

Среди бактериальных антигенов выделяют Н, О, К и другие. Н-антигены — это жгутиковые антигены, которые получили название от Н-штаммов протея (от нем. Hauch — дыхание). Е. Вейль и А. Феликс наблюдали, что Н-штаммы дают на твердой питательной среде сплошной рост, а О-штаммы (от нем. Ohne hauch — без дыхания) растут в виде отдельных колоний.

Н-антиген представляет собой белок флагеллин. Он разрушается при нагревании (56-80°С), а после обработки фенолом сохраняет свои антигенные свойства.

О-антиген грамотрицательных бактерий связан с липополисахаридом клеточной стенки. Антигенной детерминантой ЛПС (липополисахарида) являются О-специфические боковые цепи, состав которых существенно различается не только у разных видов, но и в пределах одного вида у разных сероваров. В них содержатся гексозы (галактоза, глюкоза, рамноза т.п.) и N-ацетилглюкозамин.

Ранее этот антиген называли соматическим (расположенным в содержимом клетки, в соме), но это не совсем правильно, потому что О-специфические цепи немного выступают над поверхностью клетки.

Полный соматический антиген в S-форме содержит полисахаридный гаптен.

При переходе в R-форму соматический антиген теряет выраженную видовую специфичность, что связано с потерей специфического полисахарида.

Соматическими антигенами считают также липопротеиды. Как и ЛПС, они являются термостабильными антигенами, выдерживают нагревание до 80-100°С в течение 1-2 часов, не разрушаются после обработки формалином и спиртом.

При иммунизации животных живыми культурами, которые имеют жгутики, образуются антитела к О- и Н-антигенам, а при иммунизации кипяченой культурой — только к О-антигену.

К-антигены (капсульные) так же, как и О-антигены связаны с ЛПС клеточной стенки и капсулой, но зачастую содержат кислые полисахариды: глюкуроновую, галактуроновую и другие уроновые кислоты. По чувствительности к температуре К-антигены разделяют на А, В, М и L-антигены. Наиболее термостабильны А и М-антигены, которые могут выдерживать кипячение в течение 2 ч.

В-антигены выдерживают нагревание при температуре 60°С в течение часа, а L-антигены разрушаются при нагревании до 60°С.

К-антигены часто маскируют О-антигены, поэтому для того, чтобы разрушить К-антигены, необходимо прокипятить культуру.

Наиболее полно изучен капсульный Vi-антиген брюшнотифозной сальмонеллы и некоторых энтеробактерий. Из-за высокой вирулентность Vi-антиген назвали антигеном вирулентности.

Капсульные антигены обнаружены у Streptococcus pneumoniae (80 сероваров), Klebsiella pneumoniae (70 сероваров), в том числе возбудителей риносклеромы, у Bacillus anthracis (капсулы полипептидной природы). Антигены риккетсий, хламидий, микоплазм также связаны с поверхностными структурами клеток. Антигенными свойствами характеризуются также пили, фимбрии, мембраны, цитоплазма, ферменты, токсины.

У некоторых бактерий (Bacillus anthracis, Yersinia pestis, возбудителей коклюша, туляремии, бруцеллеза) найдены протективные антигены. Они характеризуются высокими защитными свойствами, вызывают синтез антител и могут использоваться для иммунизации.

У вирусов в роли антигенов могут выступать нуклеопротеиды (S-антигены, S — от лат. Solutio — растворимый), компоненты капсида, а также компоненты клеток хозяина (липиды, углеводы), адсорбированные на капсиде.

Многие вирусы имеют в составе особый антиген — гемагглютинин, который способен склеивать эритроциты различных животных и человека.

Реакция гемагглютинации под влиянием вирусных частиц состоит из двух стадий:

1) адсорбция вирусов на эритроцитах за счет взаимодействия с их гликопротеидными рецепторами;

2) слипание эритроцитов, на которых адсорбированы вирусы, можно наблюдать невооруженным глазом в виде «зонтиков» при постановке диагностической реакции гемагглютинации в плексиглазовых планшетах.

У вируса гриппа и других вирусов, которые продуцируют нейраминидазу, может происходить спонтанная диссоциация смеси вирусы-эритроциты, которая сопровождается освобождением вируса и в ряде случаев гемолизом эритроцитов. Это происходит за счет разрушения рецепторного мукоида эритроцита ферментом нейраминидазой.

Наличие вирусов в культуре можно обнаружить с помощью реакции гемадсорбции. Достаточно нанести эритроциты на поврежденную ткань или орган. Реакции гемагглютинации и гемадсорбции не являются иммунологическими, так как происходят без участия антител.

Но гемагглютинины вирусов способны вызывать образование специфических антител — антигемаглютининов и вступать с ними в реакцию торможения гемагглютинации (РТГА).

У вирусов также различают группоспецифические (в пределах рода или семьи) и типоспецифические (у разных штаммов в пределах одного вида) антигены. Эти различия учитываются при идентификации вирусов.

В связи с распространением аллергических заболеваний в последние годы интенсивно изучаются различные антигены (аллергены), которые могут вызвать неадекватный иммунный ответ с развитием воспалительной реакции (гиперчувствительность немедленного и замедленного типа).

Особая группа антигенов (чаще всего гаптены), которые вызывают реакции гиперчувствительности, — это пыльца растений, шерсть животных, волосы, перья, выделения насекомых, плесневые грибы и их споры, комнатная пыль, косметические, моющие, дезинфицирующие, лекарственные и другие средства. К пищевым аллергенам относятся рыба, молоко, яйца, орехи, томаты, земляника, цитрусовые. Сенсибилизацию к аллергенам могут вызвать амино-, нитро- и азосочетания. При диагностике используют кожные пробы, которые позволяют выявить активный аллерген для определенного лица.

Источник: //infection-net.ru/immunitet/antigenyi-bakteriy-i-virusov

WikiMedSpravka.Ru
Добавить комментарий